本文记录于2021年初。不满于网络上的资料大多过时和有瑕疵,重新整理 Ubuntu 环境下配置 CUDA 开发套件的步骤。
- 本文介绍的步骤主要面向 CUDA 相关的机器学习开发环境配置。所以它包含 CUDA、cuDNN、TensorRT、onnx。如果你不需要其中某些组件,直接跳过即可。
- 本文涉及的版本信息:Ubuntu 18.04、CUDA 10.2、cuDNN v8.0.5、TensorRT 7.1 GA。请根据你自己的需要选择恰当的版本,唯一注意的是:这几个组件之间的版本必须严格对应,请跟自己的团队确认好版本之后再执行安装,否则会遇到很多版本兼容性问题。


![Rendered by QuickLaTeX.com \[ \begin{cases} \frac{\partial J}{\partial \theta_1} = \frac{1}{m} (h_\theta(x^1)-y^1) x_1\\ \frac{\partial J}{\partial \theta_2} = \frac{1}{m} (h_\theta(x^2)-y^2) x_2\\ \dots \\ \frac{\partial J}{\partial \theta_n} = \frac{1}{m} (h_\theta(x^n)-y^n) x_n \end{cases} \]](https://www.twisted-meadows.com/wp-content/ql-cache/quicklatex.com-f9b6d356c7a24a2620e66f9856fdf47a_l3.png)
![Rendered by QuickLaTeX.com \[ \begin{cases} \frac{1}{m} (h_\theta(x^1)-y^1) x_1 = 0\\ \frac{1}{m} (h_\theta(x^2)-y^2) x_2 = 0\\ \dots \\ \frac{1}{m} (h_\theta(x^n)-y^n) x_n = 0 \end{cases} \]](https://www.twisted-meadows.com/wp-content/ql-cache/quicklatex.com-b0229cf18f354e08a97a5d8f64c9482b_l3.png)